32 research outputs found

    Segmentation of brain MRI during early childhood

    No full text
    The objective of this thesis is the development of automatic methods to measure the changes in volume and growth of brain structures in prematurely born infants. Automatic tools for accurate tissue quantification from magnetic resonance images can provide means for understanding how the neurodevelopmental effects of the premature birth, such as cognitive, neurological or behavioural impairment, are related to underlying changes in brain anatomy. Understanding these changes forms a basis for development of suitable treatments to improve the outcomes of premature birth. In this thesis we focus on the segmentation of brain structures from magnetic resonance images during early childhood. Most of the current brain segmentation techniques have been focused on the segmentation of adult or neonatal brains. As a result of rapid development, the brain anatomy during early childhood differs from anatomy of both adult and neonatal brains and therefore requires adaptations of available techniques to produce good results. To address the issue of anatomical differences of the brain during early childhood compared to other age-groups, population-specific deformable and probabilistic atlases are introduced. A method for generation of population-specific prior information in form of a probabilistic atlas is proposed and used to enhance existing segmentation algorithms. The evaluation of registration-based and intensity-based approaches shows the techniques to be complementary in the quality of automatic segmentation in different parts of the brain. We propose a novel robust segmentation method combining the advantages of both approaches. The method is based on multiple label propagation using B-spline non-rigid registration followed by EM segmentation. Intensity inhomogeneity is a shading artefact resulting from the acquisition process, which significantly affects modern high resolution MR data acquired at higher magnetic field strengths. A novel template based method focused on correcting the intensity inhomogeneity in data acquired at higher magnetic field strengths is therefore proposed. The proposed segmentation method combined with proposed intensity inhomogeneity correction method offers a robust tool for quantification of volumes and growth of brain structures during early childhood. The tool have been applied to 67 T1-weigted images of subject at one and two years of age

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    Registration of 3D fetal neurosonography and MRI.

    Get PDF
    We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The reconstructed magnetic resonance volume is first segmented using a probabilistic atlas and a pseudo ultrasound image volume is simulated from the segmentation. This pseudo ultrasound image is then affinely aligned with clinical ultrasound fetal brain volumes using a robust block-matching approach that can deal with intensity artefacts and missing features in the ultrasound images. A qualitative and quantitative evaluation demonstrates good performance of the method for our application, in comparison with other tested approaches. The intensity average of 27 ultrasound images co-aligned with the pseudo ultrasound template shows good correlation with anatomy of the fetal brain as seen in the reconstructed magnetic resonance image

    Mother-infant interactions and regional brain volumes in infancy: an MRI study

    Get PDF
    Background: It is generally agreed that the human brain is responsive to environmental influences, and that the male brain may be particularly sensitive to early adversity. However, this is largely based on retrospective studies of older children and adolescents exposed to extreme environments in childhood. Less is understood about how normative variations in parent-child interactions are associated with the development of the infant brain in typical settings. Method: To address this, we used magnetic resonance imaging to investigate the relationship between observational measures of mother-infant interactions and regional brain volumes in a community sample of 3-6 month old infants (N=39). In addition, we examined whether this relationship differed in male and female infants. Results: We found that lower maternal sensitivity was correlated with smaller subcortical grey matter volumes in the whole sample, and that this was similar in both sexes. However, male infants who showed greater levels of positive communication and engagement during early interactions had smaller cerebellar volumes. Conclusion These preliminary findings suggest that variations in mother-infant interaction dimensions are associated with differences in infant brain development. Although the study is cross-sectional and causation cannot be inferred, the findings reveal a dynamic interaction between brain and environment that may be important when considering interventions to optimize infant outcomes

    Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood.

    Get PDF
    Autism spectrum disorder (ASD) is a common neurodevelopmental condition, and infant siblings of children with ASD are at a higher risk of developing autistic traits or an ASD diagnosis, when compared to those with typically developing siblings. Reports of differences in brain anatomy and function in high-risk infants which predict later autistic behaviors are emerging, but although cerebellar and subcortical brain regions have been frequently implicated in ASD, no high-risk study has examined these regions. Therefore, in this study, we compared regional MRI volumes across the whole brain in 4-6-month-old infants with (high-risk, n = 24) and without (low-risk, n = 26) a sibling with ASD. Within the high-risk group, we also examined whether any regional differences observed were associated with autistic behaviors at 36 months. We found that high-risk infants had significantly larger cerebellar and subcortical volumes at 4-6-months of age, relative to low-risk infants; and that larger volumes in high-risk infants were linked to more repetitive behaviors at 36 months. Our preliminary observations require replication in longitudinal studies of larger samples. If correct, they suggest that the early subcortex and cerebellum volumes may be predictive biomarkers for childhood repetitive behaviors. Autism Res 2019, 12: 614-627. © 2019 The Authors. Autism Research published by International Society for Autism Research published byWiley Periodicals, Inc. LAY SUMMARY: Individuals with a family history of autism spectrum disorder (ASD) are at risk of ASD and related developmental difficulties. This study revealed that 4-6-month-old infants at high-risk of ASD have larger cerebellum and subcortical volumes than low-risk infants, and that larger volumes in high-risk infants are associated with more repetitive behaviors in childhood

    Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project

    Get PDF
    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age
    corecore